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The macroscopic transport parameters Kn (n = O, 1, 2) defined by Ziman are calculated 
in the framework of the Mayadas-Shatzkes model from two opposite assumptions: 
whether or not the reflection coefficient depends on electron energy. In the case of metal 
and semi-metal films asymptotic formulations are given. It is only in the case of fine- 
grained film that the equations strongly differ whether or not R is energy dependent. A 
comparison with several experiments related to the thermoelectric power of noble metal 
films and the temperature coefficient of resistivity of semi-metal films suggests that R 
must be physically regarded as energy independent. 

1. I n t r o d u c t i o n  

The Mayadas-Shatzkes model, M-S model, [1] 
was the earliest model proposed for describing the 
effect of grain boundaries of thin metal films on 
the electrical conductivity. Alternative models 
have been proposed recently [2-6]  and it then 
appeared that the M-S model was not a convenient 
tool for calculating the Hall coefficient [7]. More- 
over, some implicit assumptions were required [6] 
for the validity of the M-S model, which is, in 
fact, a unidimensional representation of multi- 
dimensional phenomena [6]. In this way, a physi- 
cal relation could be found [5, 8] between the 
reflection coefficient of the M-S model, R, and 
the statistical electronic transmission coefficient 
at grain boundaries, t, introduced later by several 
authors [2-6] .  Variation in t with electron energy 
does riot seem physically acceptable because t 
describes the roughness of the grain boundary, 
the same assumption is also valid for R, starting 
from the relation [8]: 

R 1 
- l o g -  (1)  

1 - - R  t 

This assumption was used for calculating directly 
the thermoelectric power of thin films in the M-S 
model [9]. 

However, the mathematical expression for the 
ratio R (1 - R ) - I  given by Mayadas and Shatzkes 
is [1]: 

2 R 2m s 
1- -R  h3 VFKF (2) 

where m is the electron effective mass, VF the 
Fermi velocity, h is Planck's constant, KF = 
mh-1 VF and s is the magnitude of the Dirac 
potential which represents any grain-boundary in 
the M-S model. 

Hence if s is defined as a constant value (inde- 
pendent from electron energy E), the formal 
equation used for calculating the thermoelectric 
power, Sf, is [10, i1]: 

In of [ 
Sf = - - A T  ~---~nEIE=EF, (3) 

where E F is the Fermi energy, A a constant for a 
given material, and uf, the electrical conductivity 
of the film, must be used by introducing the 
relation: 

~ 1 ~  ]E--EF = -- 1 (4) 

One must not overlook the fact that this relation 
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is valid if s is independent of E, i.e. if any grain 
boundary can be identified with a potential hill; 
in our opinion this assumption is not easily justified. 

In order to answer the question "does it work?" 
from a general point of view, we have calculated 
the macroscopic transport coefficients of Ziman 
[10, 12] in the framework of the M-S model, 
using either Equation 4 or the following equation: 

I R ~  
In 

~ )  = o (s) 
3 lnE 

2. Theory 
2.1. The macroscopic transport coefficients 
Three transport coefficients K n (n = 0, 1, 2) are 
defined from the relation [12]: 

K n = ( E -  EF) n o~(E) - - ~  dE 

n = 0, 1, 2 (6) 

where Fo is the equilibrium distribution function 
of electrons. 

Expanding the integrand in Taylor develop- 
ment in the vicinity of EF gives [ 12, 13] : 

l [o (nBT)2 } ~)2 0"f (E) 7 
Ko = -~- f (E)  q 6 ~ E=E ( ) 

l[("lrBT)21~o~(E) 
K1 = -~ -- 8E 

7 0~of(e) ]  (8) 
+ -90 (frBT)4 3E3 E=E F 

1 (rrBT) 2 Ion(E) 
Ks = e2 3 

82o~(E)1 7__ OrBT)2 (9) 
+ 10 3E2 ]E=EF 

where B is the Boltzmann constant and T the 
absolute temperature. 

Introducing the M-S function, f(~), defined 
by: 

f(oO = ot/Oo (10) 

where Oo is the conductivity of the bulk material 
and [1]: 

= koD~XR(1 -- R)  -~ (11) 
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where Xo is the electron mean free path in the 
bulk material and Dg the average grain size, 
Equations 7 to 9 go to the following forms [14]: 

e 2 {r;BTt2[16( s - - K o  = f(~) + ~ + �89 + ~)f(~) oo CG/ / [ 

1 3(s_F�89 2 1 ] 
- 12(s + �89 + ~) 1 + a (1 + ~)~ 

(12) 

e 2 (rrBT) 2 { 
- - K 1  - (4s + 3)f(a) 
o0 3EF 

1 + 7 [zrBT~ 2 
- -3 ( s+ �89  1 + a 3--~ I-~-F ) (S + 5) 

[(64s 2 + 64s + 12)f(a) -- 3(16s z + 16s + 3) X 
k 

1 1 
- -  -- 9(s + 5) 2 x l + a  ( l + a )  2 

- 6 ( s  + 5)z 1---J-----l}(1 + a) 3 (13) 

e 2 (rrBT)2{f 7 (rrBTl2 
Ks = - -  (a) + 

ao 3 "-~ !--~F ] 

[ x 16(s + 5)(s + ~)f(a) -- 12(s + 5)(s + ~) 1 + a 

- -3 ( s+  51z ( 1 ~ 1  1 } +  a) 2 (141 

assuming the validity of Equation 5 and: 

e2 (~E-~)2 [ - -Ko  = f(a) + 1 4s(4s -- 1)f(a) 
O0 

1 - -3(s- -5)~  1 ] - - 3 ( s - - 5 ) ( 4 s +  1) l + a  ( l + a )  ~ 
t 

(15) 
e 2 (1rBT) 2 [ 1 
- - K 1  - - -  [ 4 s f ( a ) - - 3 ( s - - ~ ) i  + a  
Oo 3EF 

/\|rrBTI2( s -- 5) []16s( 4s -- 1)f(a) 7 + 

1 1 
- 12s(4s - 1) 1 + a - 9(s2 - �88 (1 + a) -------~ 

-- 6(s -- ~)2 - - ~ a ) 3 ]  } (1 (16) 



e 2 (zrBT)2 [ 7 (lrBTI2 
- - K 2  - - -  ; ( a ) +  
oo 3 , T8 ~TT/  

s(4s -- 1)f(a) --3(s -- �89 + 1) 1 +----~ 

--3(s--~)2 1 ]} (1 + ~)~ (17) 

assuming the validity of Equation 4, with: 

d In To 
s = d l n E  r (18) 

where To is the electron relaxation time in the 
bulk material. 

One can immediately predict the deviations in 
the two expressions of the usual transport para- 
meters obtained in this way, since the electrical 
conductivity of, the thermoelectric power Sf, and 
the thermal conductivity Cf are expressed by 
[6, 10, 11]: 

of = e2Ko (19) 

1 K1 
Sf = eT  Ko (20) 

C~ = -~- 2 - - K o ]  (21) 

2.2. The case of metal films 
In the case of pure metal films, 

1rBT/E F "~ 1 (22) 

and the approximate equations for Ko, KI, and K2 
are: 

e 2 
- -  K o  ~ f ( a )  ( 2 3 )  
00 

e2 (TrBT)2 [ 1 1 ] 
- - K 1  ~ -  (4s+ 3 ) f ( o O - - 3 ( s + - ~ ) ~ - ~  , 
Oo 3EF 

d l n E  " = 0 (24') 

[ 1 1 - - K I ~  - -  4 s f ( a ) - - 3 ( s - - � 8 9  , 
ao 3EF 

din (1 ~ )  
- 1 (24")  

d lnE 

e 2 (rrBT) 2 
- -  K2 "~ " f ( a )  ( 2 5 )  
a0 3 

For low values of a, i.e. for grains of large size, 
the above expression for (e2/ao)Kx become: 

e 2 (rrBT) 2 
- - K I ~ - -  [ s + ~ - - 3 ( s +  1)a] 
Oo 3EF 

d l n ( 1 - - ~ ) =  0 (26') 
d lnE  

e ~ (TrBT) 2 
- -  K1 ~ -  [s + ~ - - 3 ( s  + � 8 9  
ao 3Er 

- - -  1 (26")  
d l n E  

and [1,6]: 

f (a)  ~- 1 -- 3 a (27) 

For high values of a, i.e. for fine-grained films, 
the above expressions for Ka become: 

e 2 (~BT)2 I 3 + 1 1 - -  K ,  -- - ~ (s - �89 
Oo 3E F ~a  ~ - '  

din E - 0 (28') 

e 2 (~'BT)213 + s 1 J  
- -oo/q ~ . . . . . .  3EF ~ ~ ( s - -  ~) ~T 

din ( 1 - - ~ )  

d in E = -- 1 (28") 

and [1, 61" 

3 3 
f(a)  -~ (29) 

4a 5a 2 

The last equations show that a marked variation 
in the behaviour of transport parameters can occur 
for fine-grained films, whether the assumption of 
energy independence of R (1 -- R)-I is retained or 
not; for instance, the absolute magnitude of the 
thermoelectric power of fine-grained films is multi- 
plied by a factor, 2, when an energy dependence 
of the ratio R(1 - -R)  -1 is retained, as shown by 
introducing Equations 28' and 29, or Equations 
28" and 29 in Equation 20: 
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S f  

S t ~ - -  _ _  

3eEF 

d l n ( ~  

d In E = -- 0 (30') 

3eEF 2 + ~ (s---~) , 

dln( R ~ I  
-R  L 

d l n E  - --1 (30") 

These expressions can be compared to the 
theoretical value of the thermoelectric power in 
the bulk material, So, expressed as [1 I, 15]: 

So = (TrB) 2 r (U+ V) (31) 
3eEr 

with: 

3 In X___s I (32) 
U = OlnE,~=EF 

0 In ct ] 
V = ~lnE[E=EF 

(33) 

where ct is the area of the Fermi surface. 
Under the simplifying assumption of a spherical 

Fermi surface the value of V is unity. Taking into 
account the possible energy dependence of the 
relaxation time (Equation 18), the value of U is: 

U = s + �89 (34) 

Hence: 

T (s + 3) (3 5) 
So - 3eEF 

In the case where the electron relaxation time 
does not depend on energy, i.e. for s = O, it is 
clear that the thermoelectric power of fine-grained 
metal film takes an absolute magnitude larger than 
that of the bulk material. Such a behaviour is 
somewhat surprising since it is generally reported 
that the absolute magnitude of the thermoelectric 
power of pure metal films increases with thickness, 
[11,15], in good agreement with the general 
relation: 

_ r Iv + u ] St (36) 
3eEv [ /3oJ 

/ 

where/3f and 13o are the temperature coefficient of 
the film and the bulk material, respectively. 

Many consequences of the above relation have 
been deduced in the case of polycrystalline and 
monocrystalline films, in good agreement with the 
experiments of several authors [11, 15]. Conse- 
quently we do not retain the assumption of energy 
dependence of the ratio R (1 -- R)- I .  

It can be objected that our opinion is based on 
the theoretical values of So, whereas several authors 
have given experimental data which differ markedly 
[11, 15], except in the case of noble metals where 
no marked deviation occurs. Moreover it has been 
shown that some authors did not take into account 
the effect of grain boundaries that modifies the 
experimental values of U and V, as recently pointed 
out [16, 17]. Our opinion can also be sustained by 
the fact that empirical results related to the con- 
ductivity lead to the same conclusion [18]. No 
verification of the conclusion can be found by 
studying the behaviour of the thermal conductivity 
of thin metal films since the role played by/~2 is 
related to a second-order term in the usual assump- 
tion of rrBT/EF ~ 1. 

2.3. Semi-metal films 
In the case of semi-metal films, the complete 
expressions of K0, K1 and K2 must be used and in 
the limiting cases of large and fine grains, the fol- 
lowing approximate equations for Ko and K1 are 
obtained, after tedious calculations: 

e 2 (TrBT)~ (s + �89 
- - K ~  EF 
Cro 

d,n( t [ ] 
X [S+3--6(S+1)0~],  a ~ l ,  d l n E  - 0  

[ 1  
(37') 

e2 (nBT)Z [ 1 EF (s+�89 
0 0  

din (1 - - - ~ )  
~ 1, = 1 (37")  

d lnE 

e 2 (TrBT) 2 { __7 
- -K1 ~ ( s + 3 ) - - 3 ( s +  1)a+ 
~ro 3EF 30 

x I ~ - F )  (S+�89 S 2 +S- -~- -12S(S+ 1)a , 

dln ( 1 - - ~ )  
a "~ 1, 0 (38') 

d l n E  
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e" (rrBT) 2 [ 7 --g,~ [(s+ b-3(s+ �89 3--d 
Oo 3EF 

[rrBT\2 2 + 12sa] 

~x < 1, d in E 1 (3 8") 

e 2 (rrBT)2( 7 (rrBTI2 - - K ~  1-~-~+ (s+{) 
Oo 3 , i-0 \ ~ - v  ] 

e 2 0rBT)2 { _ ~ a + 7 ( r r B T l =  
- - K 2  ~ 1 (s + �89 ~o 3 ~T;-~ ] 

[ 1 dln ) 
x s + ~ - - 6 s a ,  a < l ,  d~nE  - 1 

e 2 

f K  o 
Oo 

(39") 

3 3 + l ( r c B T l 2  1 
4a 5a 2 10 \--~F ] ( - s2  + �88 ~-  

>> 1, d in  E - 0 (40') 

rrBT] 
~o Ko ~ 4a 5o~ z 

- T f ~ - j '  

a >> 1, d In E = -- 1 (40") 

e z (rrBT)2 [ 3 + 1 {rrBT] 2 

• (s + b C  + s - ~ )  , ~ >> 1 - 0 
' d l n E  

(41 ') 

e 2 

Oo 

(  )11 
X(S - 1 )  s 2 - - 4 s +  --~ , 

a>> 1 ,  - - -  1 ( 4 1 " )  
d l n E  

e z (gBT) ~ [ 3 
- -  g 2 Oo 3 ,~a [ 

,], • C - k) 

e2 (rrBT)2 {Ta 
- - K  2 ~ 
Oo 3 

3 = 

dln (1_-~) 
a>>l, ,  . . . .  0 

d i n E  

3 21 (~rBTI2 

-~-d  + = - 4 s  + ~ - ] ~ 7 ] j  , 

a>>l ,  -- --1 
d lnE  

(42') 

(42") 

It may be observed anew that the main devi- 
ations in the formulations of a given Kn occur in 
the case of fine-grained fihns, especially for K1, as 
in the preceding case of metal films, and for the 
extra term in the brackets (typical of semi-metals) 
in the expressions of Ko and K2; it appears that 
the extra term varies as a -~ when R depends on 
energy and as a-2 when R does not. 

Consequently the magnitude of the extra term 
in the film conductivity of (Equation 19)would 
be much more important when R depends on 
energy as shown by the expressions of of: 

~ o o  & 5~2 ~\%-~1 (,2 , 

d In (1 _ - ~ )  
a >> 1, = 0 (43') 

d l n E  

of~Oo l + ~ - ~ - v  ] ' 

d ln  ( 1 ~ )  

a >> 1, d in E - 1 (43") 
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Neglecting (TrBT/EF) 2, equations 43' and 43" 
reduce to previously proposed equations [ 19]. 

The film temperature coefficient of  resistivity, 
3f, defined by: 

3f = -- a In of~aT (44) 

can be calculated from Equation 43", and gives: 

- - ~ f ~ 0 - ~ l n  [ 1 +  1{TI'BT~2] '~-E--~F ] J (45) 

Equation 45 can be written as: 

- tT;- H r ,  1 (46) 

Similarly Equation 43'  gives: 

1-U  1 + 

(47) 

that roughly reduces to: 

4 {  [ (rrBTI2 

1/fiBS2 ]} 
+ ~--~F] T(s2 -- �88 ' ~ >~ 1 (48) 

In the case of  antimony films low negative 
values of  3f have been observed [20] for fine- 
grained films, that can be regarded as compatible 
with both Equations 46 and 48. Simultaneously it 
was observed [19] that the variations in the con- 
ductivity with temperature [12, Fig. 2] were less 
marked than with grain size, for fine-grained films 
(grain diameter = 20nm).  Hence Equation 43' 
seems more adequate. We consequently assume 
that the R coefficient of  the M - S  model [1] can 
be regarded as independent of  electron energy. 

The fact that R could be regarded as energy 
dependent from a mathematical point of  view is 
due to the modelling of  the grain-boundary by 
Mayadas and Shatzkes in the framework of  the 
dislocation model of  Ziman [21 ] ; the existence of  
a Dirac potential hill of  given "strength" [1] for 
representing a grain boundary [1] is unusual since 
it is well known that in the case of  very thin poten- 
tial barrier the tunneling procedure [22] is 
markedly determined by the image force which 
lowers the barrier [21]. Therefore this mathe- 
matical model of the grain boundary must be 
regarded as a mathematical tool whose physical 

interpretation must  be emphasized from exper- 
iments. 

Some unattempted features of  the M - S  model 
have been presented previously [6] and also 
suggested a mathematical point of  view. 

5. Conclusion 
The general calculations of  the macroscopic trans- 
port parameters of  thin metal and semi-metal 
films in the framework of  the Mayadas-Shatzkes 
model and comparison with experiments suggests 
that the reflection coefficient at grain-boundaries 
must be regarded as independent of  electron energy. 
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